Editorial

The last issue of the year is the third issue in a series of Special Issues on Methods in Marketing Research. As in previous Special Issues, renowned scholars were asked to submit methodological papers on topics of particular interest to PhD students and post-doctoral researchers. We would like to thank the authors of this issue as well as the reviewers for their commitment. We wish all readers to gain new insights and encouragement for their empirical research by reading the articles. Below is an overview of the three articles contained in this issue.

The first paper “Latent Class Conjoint Choice Models. A Guide for Model Selection, Estimation, Validation, and Interpretation of Results” by Friederike Paetz, Maren Hein, Peter Kurz, and Winfried Steiner deals with the consideration of preference heterogeneity in consumer choice modelling. Conjoint analyses are directly applicable for redesigning existing, or designing new products or product lines, and they are mainly used in practical applications. This method is currently the leading tool for measuring consumer preferences. For disaggregate consumer choice data representing the basis of segmentation, the latent class multinomial logit (MNL) model is now the most popular approach for estimating segment-specific preferences. After addressing the theoretical background of the latent class MNL model, the authors concentrate on an empirical choice-based conjoint data set to illustrate their proposed steps in model estimation and validation. Furthermore, they show how the estimation results can be interpreted. A particular focus of their paper lies on the model selection process, i.e., the determination of an appropriate number of segments. They demonstrate how interpretation pitfalls when the existing preference heterogeneity of consumers is ignored. Overall, the authors provide a useful guide about the application of latent class MNL models in choice-based conjoint analyses, which covers important aspects such as model selection, estimation, validation, and interpretation of results both from a statistical and a managerial perspective.

In the article “Missing Data – Better “Not to Have Them”, but What If You Do? (Part 1)”, Dirk Temme and Sarah Jensen deal with missing values as a widespread problem in empirical marketing research. In surveys, for example, respondents may overlook some items, may not want to disclose certain information (e.g., sensitive aspects such as income or alcohol consumption), or may simply lack the motivation to put a lot of cognitive effort into answering a question. Using modern missing data methods like multiple imputation analysis or full-information maximum likelihood to treat missing data in empirical analyses has become relatively easy due to the available programs in widely used software packages such as SPSS, STATA, R, or Mplus. However, the authors argue that the application of advanced missing data methods requires a sound understanding of the prerequisites and limitations of these methods as well as a deeper understanding of the processes that have led to missing values in an empirical study. In order to help researchers decide which tools they should use to deal with missing data in their study, this article as Part 1 of a longer manuscript pursues two objectives. First, the basic types of missing data mechanisms (Missing Completely at Random, Missing and Random, Missing Not at Random) are explained. Following the classical definitions by Rubin (1976), an alternative taxonomy is outlined, which defines missing data mechanisms by conditional independence relations between missing data indicators and observed as well as unobserved variables. This approach offers clear advantages in terms of transparency due to its graphical representation of the missing data mechanisms, as several examples show. Second, a selection of visualization tools available in different R packages for the description and exploration of missing data structures is presented. The use of these tools shall help researchers to develop a deeper understanding of the causes of missing values in their data.

In the last paper “A Note on Confidence Intervals and Model Specification”, Thomas Otter argues that exploratory research often goes beyond the mere empirical calibration of parameters in well-established models and rather includes the empirical assessment of different model specifications. In this context, researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the ‘true’ set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of his paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. The author finds that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model. The author closes his paper with recommendations for applied research.

Yasemin Boztuğ, University of Göttingen, Germany and Dirk Temme, University of Wuppertal, Germany
Editors-in-Chief